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Abbreviations and symbol list 
SMPS Switch Mode Power Supply 
PWM Pulse Width Modulator 
CMC (peak) Current Mode Control 
VMC, DCC Voltage Mode Control = Duty Cycle Control 
CCM Continuous Current Mode: Inductor current is always > 0. 
DCM Discontinuous Current Mode: Inductor current = 0 in fractions of the switching period. 
ESR Equivalent Series Resistance 
DC 'Direct Current'. Current, voltage, or other signal with a constant positive or negative value 
AC 'Alternating Current'. Current voltage, or other signal with a variable value and average = 0 
 
 

List of symbols 

Vi Fixed input voltage of the buck power stage 
Vo + vo  Buck output voltage, steady state + perturbation 
Vs + vs  Average voltage pr. cycle after the switch, steady stage + perturbation 
Vg + vg  Control voltage, steady state + perturbation 
Vpp Slope compensation ramp or duty cycle control ramp, Volt peak-peak 
Vsens + vsens Current sense voltage during the on-time, steady state + perturbation. Vsens = IL ∙ Rsens 
 
IL + iL Inductor current, steady state + perturbation 
ÎL + îL Inductor peak current, steady state + perturbation 
Ipp + ipp Inductor ripple current, steady state + perturbation. ÎL + îL = IL + iL + ½ ∙ (Ipp + ipp) 
Io + io Output current into the load resistor Rload, steady state + perturbation 
 
F Switching frequency 
T Switching period. T = 1/F 
t Continuous time variable 

s = σ + j ω        Complex frequency for Laplace transform. ω is radial frequency 

∆ + δ Duty cycle, steady state + perturbation 
 
L  Inductance of buck inductor 
Co Output capacitor 
ESR Equivalent series resistance of output capacitor 
Rsens, Current sensor, sensing current in the on-time. Unit = V/A 
Rsens Current sensor multiplied to a correction factor describing subharmonic behaviour 
RL Copper resistance in the buck inductor 
Rload Dynamic load resistance. Does not have to be Vo/Io. It can be infinite, or even negative 
Zload Impedance of output capacitor + Rload 
ZL  Impedance of inductor 
 
Powergain Gain from control input vg to output current iL  [A/V] 
Vpowergain Gain from control input vg to output voltage vo  [dB] 
 
upslope Sensed slope of inductor current in the on-time 
downslope Sensed slope of inductor current in the off-time, defined as a positive number 
slope Slope of compensating ramp. Slope = Vpp/T 
pro, proo Error progression factor from one switching cycle to the next. proo is with Vpp = 0 
 
HFcor(s) Multiplying this correction factor to Rsens is all it takes to describe subharmonic behaviour 
 

ωo Radial resonance frequency of the analog model. Also used with a corrected value at π ∙ F 

Q, Qo Q factor of an analog ringing resembling that of subharmonic error decay. Qo is with Vpp = 0 
d Damping factor of the (L + Co) resonance in the buck transfer function in VMC 
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Abstract 

Small signal feedback loop analysis of pulse width modulated (PWM) converters have been treated by many 
authors during time.  

In this article I try to show an alternative way, using math that most electronic engineers can master.  
It leads to simple and ready-to-use equations for the transfer function of the buck power cell in Continuous 
Current Mode.  
It covers both Voltage Mode and Current Mode Control.  
Part of the derivation is to find the basic equation for the PWM modulator. It is derived from simple geometric 
observations, however this modulator gain seems to be the subject of heavy disagreement among SMPS 
experts.  

Subsequently, a new and surprisingly simple equation is found to describe the well-known subharmonic 
behaviour of a current mode controlled PWM power cell in Continuous Current Mode: 

This strange (complex) correction factor is simply multiplied to the (real) current sensor gain Rsens in the above 
mentioned PWM modulator equation. By doing so, the apparent “resonance peak” at half the switching 
frequency, when using peak current mode control, is included in the power cell’s transfer function.  
The correction factor does not involve component values or control data, only operating duty cycle and 
switching frequency.  (!!) 
I admit, the HFcor equation defies my imagination deeply, but plotting the result in a calculator reveals its power. 

Multiplying this correction factor to Rsens applies to buck as well as boost and buck-boost. 

Gain and phase of the power cell’s transfer function can be plotted with any suitable math software.  

The modulator gain expression and the subharmonic correction factor have been verified for buck and buck-
boost by simulations in Simplis, and the controversial modulator gain expression has further been confirmed by 
experimental results in a specially built buck power stage. The documentation of the verification is not part of 
this article.  
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1 Introduction 

The present article was written after many years of designing Switch Mode Power Supplies for the industry.  

Switch mode power supplies comprise an ever increasing wealth of topologies, all of them containing inductors 
and/or transformers, capacitors, and fast semiconductor switches like mosfets and diodes. An on-going 
endeavour is to come closer and closer to the magic efficiency of 100%.  

However, topologies and efficiency will not be the topic of this article. This article will concentrate on one well-
known topology: the buck (step down) converter and how to understand its regulation mechanism.  
Many papers during time have dealt with that topic, so why do I want to go into it once again?  

The fact is that most electronic engineers are unable to follow the techniques and advanced mathematic 
abstraction used in those papers. I am one of those engineers.  
Therefore "I did it my way", although I am not a big fan of the singer of that song. I believe I found a way through 
the math that is relatively easy to follow for an engineer, leading to equations directly usable in any math 
software. 

Various software is available that will help you design power supplies and their regulation loops. Some is for 
purchase or licensing, some is available for free on SMPS IC-manufacturers' websites. The software can be fine 
to help us with good and fast SMPS designs, but none of them provide a deep understanding of the physics and 
modelling that lie behind. A drawback of this kind of software is that it does not always tell us under which 
conditions it is valid or inaccurate. Another drawback is that it is not very flexible regarding variation of circuit 
details or control IC. You are forced to work with the options given by the software.  

The object of this article is to de-mystify the theory behind feedback loop design in SMPS. I want to enable you 
as a design engineer to look behind the curtain and I want to encourage you to build your own calculators for 
your dedicated purposes. Or buy one of mine and modify it to fit with your needs.  
SMPS feedback loop design is difficult but should not be inaccessible magic.  

 
An SMPS usually contains a feedback loop to regulate and maintain output voltage, output current or some 
other parameter. Many SMPS designers are familiar with the notorious struggle with feedback loops and 
stability. My struggle has, during the years, led to an assortment of loop calculation tools built in Mathcad to help 
me in my design of stable and fast responding power supplies.  
It’s a long time since I have designed a self oscillating SMPS prototype, as it frequently happened in the first 
part of my career.    

During time these tools have evolved from relatively simple and with limited applicability to advanced tools 
covering many SMPS topologies and their most popular operating and control modes. You can read more in ref. 
11. 

For Pulse Width Modulated (PWM) types of converters the latest improvement of my tools was the inclusion of 
the subharmonic phenomenon observed with CMC. It has long been known that if we exceed 50% duty cycle 
with CMC (in  CCM), the power cell becomes unstable and starts to oscillate at half the switching frequency 
(F/2), even before the outer feedback loop is closed. Below 50% the power cell does not oscillate but still can 
respond to a control step with a behaviour resembling a damped ringing at F/2. This is what we call 
subharmonic behaviour. Even though the power cell is not self oscillating below 50%, it may cause an outer 
feedback loop to become unstable at F/2.  
In particular I want to share with you a way that I recently found to describe this phenomenon mathematically. A 
quite long explanation leads to one surprisingly simple and accurate equation, which is different from that found 
in other literature (ref 3 and 8). 

I will try to lead you gently into the techniques that I found useful in the modelling of the power stage of a PWM 
controlled SMPS, exemplified by the buck converter - the most straightforward one of the three basic PWM 
controlled topologies. 

I believe my approach is more or less similar to the State Space Averaging technique used by Dr. Slobodan Cuk 
and late Dr. Middlebrook in the 1970’s, however my approach does not use matrix algebra, only standard high 
school math. I am not skilled enough to handle matrix algebra, as I believe is the case for many of my readers 
too. But don’t be mistaken. It is amazing what you can do with basic high school math.  

Using matrix math is not paramount for state space averaging, although I believe it does yield simple looking 
closed form solutions, suitable for computer calculus. What is really important in the concept of state space 
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averaging is that it deals with average values of currents and voltages during each switching cycle. Using 
state space averaging, all information on switching phenomena and switching ripple is neglected. This can be 
justified for the feedback loop which by nature deals with “low” frequencies. Output signals are assumed to be 
DC, on which deviations are of low frequency nature compared to the switching frequency. Switching frequency 
ripple must be filtered out in the loop to fulfil the basic ideas of feedback and regulation. 

The total feedback loop in an SMPS system consists of several elements, most of which can be described by 
the classical methods involving s-plane theory (Laplace transform). Most electronic designers are familiar with 
these methods. Such circuit elements are for instance resistive and capacitive voltage dividers, linear amplifiers 
with local RC-feedback, opto couplers (many consider an opto coupler a frequency independent device – this is 
most often not the case), LC filter stages etc. The total open loop gain and phase is usually calculated by adding 
the dB’s and the phase angles of each individual stage.  
However there is one big issue, which is not covered by basic knowledge of electronic engineers: How to 
describe and calculate the gain and phase of the power stage.  

I am going to show you the simple derivation of the control equations for a buck power stage in CCM, first in 
DCC, then in the general case covering DCC as well as CMC and any combination in between. And I am going 
to reveal how the subharmonic behaviour can be modelled and included in a surprisingly simple, yet accurate 
way.  

As an appetizer to motivate you to continue reading, it could be a good idea to start with ref. 11. 

I am aware that some of my statements and methods can be controversial among SMPS gurus. I will discuss 
this in more detail in appendix 1. However, I believe there can be more than one good model of an SMPS power 
stage. As long as the methods we use to describe a chosen model are consistent and well-founded, the 
outcome should be a good description of reality.  

Models should always be verified with examples from real circuits or simulations. Simulations can be preferred 
over real circuits because you can make ideal models of inductors, resistors, capacitors, and switches without 
parasitic effects. I also know that not everyone will agree on that statement.  
Simplis is a simulation software which is especially good for this purpose. A pity that so many don’t know 
Simplis (ref. 13). I didn’t until recently.  

 

 

2 Basic buck control 

2.1 Basic buck properties 

The fixed-frequency buck (step-down) converter is the topology that is most usually studied in literature. For 
instance many manufacturers of DC-DC converter ICs publish application notes dealing with the design and 
compensation of the buck converter with voltage mode or current mode control. Such application notes tend to 
be a bit superficial, however probably good enough for each individual application. Some manufacturers also 
make software available which can help the designer to obtain stable feedback loops, e.g. by showing open 
loop phase and gain curves, and some times also a step load response can be calculated by the software. But 
such software seldom gives you much feeling or understanding of the theoretical background in your buck 
converter design. 

With this article I want to give you a good feeling of the properties of the buck power stage with different kinds of 
control. 

Figure 2.1.1 and 2.1.2 show the basic buck converter and its voltage waveform. A copper resistance RL is 
included in the inductor.  

Here we will study the dynamic properties of the buck converter in CCM only. Its properties in DCM can be 
much different.  

As is common practice, steady state values are described by UPPER CASE letters, while lower case letters are 
used for perturbed values, i.e. small signal deviations from steady state. 

All currents and voltages can be described as a sum of a steady state value (DC) and a small signal, time 
dependent or frequency dependant deviation (AC). What’s interesting in feedback loop analysis is the small 
signal - or dynamic - part. 
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Switches and diodes are considered ideal, i.e. no on-state voltage and no off-state current. 

The steady state transfer function for the buck is linear as shown in (2.1.1), in contrary to the boost and buck-
boost converters (ref. 11). Linearity is a very desirable property. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2.1.1) states that the average switch voltage in one cycle is input voltage multiplied by duty cycle.  
Since the average voltage over an inductor is zero, Vo = Vs minus voltage drop over the resistor (2.1.2). 

Neglecting RL, duty cycle is ∆ = Vo/Vi  (2.1.3) - a well known property for the buck converter. 
 
Like steady state properties, dynamic properties are studied by considering average values of voltages and 
currents pr. switching cycle. 

For the dynamic properties we must consider small perturbations around a selected DC working point.: δ around 

∆ for duty cycle and vo around Vo for output voltage.  
Input voltage Vi is assumed to be constant.  

We can write the following expressions (2.1.4) to (2.1.7). 
  
(2.1.4) follows from (2.1.1) because (2.1.1) is linear:  

(2.1.5) is the Laplace transform of (2.1.4).  
(2.1.6) is simply the law of inductors: V = L · dI/dt applied to the small signal part of inductor current.   
(2.1.7) is the Laplace transform of (2.1.6) with vs from (2.1.5) inserted and then solved for iL(s). Differentiation in 
time domain becomes multiplication with s in Laplace domain.  

 

Steady state buck 
equations in CCM  
(neglecting diode 
voltage drop): 

(2.1.1) 
 
(2.1.2) 
 
(2.1.3) 

Vs ∆ Vi⋅

Vo ∆ Vi⋅ IL RL⋅−

∆ approx
Vo

Vi

vs δ Vi⋅

t
iL

d

d

1

L
vs vo− RL iL⋅−( )⋅

(2.1.4) 
 
 
(2.1.6) 

(2.1.5) 
 
 
 
 
 
(2.1.7) 

vs s( ) δ s( ) Vi⋅

iL s( )
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Figure 2.1.1 
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Z load s( )
1

s Co⋅
ESR+

f o

ω o

2 π⋅

In (2.1.7) we can eliminate vo(s): 

 
 
and solve for iL(s): 

  
 
We can also write:  

 

 

(2.1.8) and (2.1.9) are the small signal transfer functions from duty cycle to output current and output voltage 
respectively. As long as we use pure duty cycle control, these equations are enough to describe the power 
stage transfer function in continuous current mode. 

Usually the output consists of a large capacitor, typically an electrolytic capacitor Co with some equivalent 
series resistance ESR. 

If we insert                                       

  
(2.1.9) turns into   

 

 

This is a 2
nd

 order transfer function with one real negative zero and two (normally) complex poles. 

 
If (2.1.10) is compared to the normalized form   
 
 
 
we see a resonance frequency  
and a damping factor d:  
 
 

In this derivation we have not taken the load resistor Rload into account. A load resistor will increase the damping 
factor, i.e. flatten out the LC resonance peak which is good. But stability should not rely on a load resistor. If the 
load happens to be a pure current source the equivalent load resistor is infinite. And if you load the output with 
another SMPS, the dynamic load resistor can even be negative. 
The final formulae (2.1.8) and (2.1.9) will take any dynamic load resistance – positive or negative – into account. 

The buck transfer function could have been written down by simple inspection of the circuit which can be 

considered an LC low pass filter with the input signal δ ·Vi . This would immediately lead to (2.1.9). 

The resonance frequency and damping factor (2.1.12) are constant versus input and output voltage and load – 
an attractive property which the boost and buck-boost converters do not have. So the buck converter is linear as 
well as invariant to load and step-down ratio, provided of course that we stay in CCM. 
 

 

i L s( )
δ s( ) Vi⋅ i L s( ) Z load s( )⋅−

s L⋅ R L+

i L s( )

δ s( )

Vi

s L⋅ R L+ Z load s( )+

v o s( )
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i L s( )

δ s( )
Z load s( )⋅

Vi
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Z load s( )
1+

(2.1.8) 
 
 
(2.1.9) 

(2.1.12) 
 

(2.1.10) 
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2.2 Buck with Current Mode Control 

In the previous section the buck converter was analyzed in the so-called Voltage Mode Control or as I prefer to 
name it: Duty Cycle Control (DCC). This is the control scheme known for the longest time. In DCC the control 
circuit has no information about inductor current so something extra must be done to protect against overload 
situations. 

Peak Current Mode Control (CMC) is another control method which has been increasingly popular since the 
1970’s. Many IC manufacturers even prefer CMC over DCC because CMC can turn the complex double pole in 
(2.1.10) into a real single pole, thus facilitating feedback loop design, and because CMC has inherent current 
limiting and overload protection. See more in ref. 11. 

In CMC the switch is still turned on by a clock generator. Inductor current IL is sensed in the on-time of the 
switch according to figure 2.2.1 and the switch is turned off again when the inductor current reaches a 
predefined value which depends on a control voltage Vg.  

If the duty cycle can be > 50%  (if Vo > 0,5·Vi) we need slope compensation to avoid subharmonic oscillation 
(ref. 1 and many others). Slope compensation is introduced by adding a positive ramp Vpp to the sensed current 
Vsens. Or by adding a negative ramp to Vg. Much more about that later. 

The model in figure 2.2.1 can be used for buck converters with slope compensation – in fact it can describe both 
pure CMC, pure DCC and all combinations in between. For pure CMC Vpp = 0.  For pure DCC Rsens = 0. Using 
slope compensation in CMC is equivalent to introducing a bit of DCC again, which we must do at duty cycles > 
50%. Therefore we need the general model like the one in figure 2.2.1. 

We must now try to find the power transfer function from control signal vg to inductor current iL (which is = output 
current in a buck). 

 
In figure 2.2.1, obviously the duty cycle depends on Vg + vg as well as Vsens + vsens, since both are inputs to the 

comparator which determines ∆ + δ. In other words, δ is a function of both the control variable vg and the peak 
current îL. (note the “hat” symbol for peak value). 
Let us first have a look at figure 2.2.2. Here I have tried to visualize the control scheme. 
 

In the steady state, the peak current is ÎL, duty cycle is ∆ and the control voltage is Vg. 

The current block Rsens ⋅ current is compared to Vg and Vpp in the comparator. 
The current block is shown added to the ramp slope, and the sum is compared to the control voltage Vg, this is 
consistent with figure 2.2.1. 

Now, if a small perturbation vg is added to the control voltage, the duty cycle will increase with δ and peak 
current will increase with îL. 

Figure 2.2.1 
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Figure 2.2.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By studying figure 2.2.2 it is evident (after a little while) that 
           
             
 
 
The left equation is verified by looking at the small triangles in the top of the picture.  

If the compensation ramp is not linear for the whole switching period, Vpp should be replaced by the 
compensation slope at the switching instant multiplied by cycle time:   Vpp = slope · T. 

(2.2.1) is one of the fundamental equations for current mode control with any amount of slope compensation, 
from pure CMC to pure DCC.  

With CMC the duty cycle is a secondary parameter since the switch is not controlled by duty cycle but by 
current. The duty cycle is now a variable which depends on both peak current  Rsens · îL(s)  and control voltage 
vg(s). The relation between these three quantities is sometimes expressed by the so-called modulator gain: 

  

 

A verbal interpretation of the modulatorgain is: If the difference between control voltage and measured peak 
current Rsens · îL moves, how much does this affect the duty cycle? Answer: with a factor of 1/Vpp. 
Another interpretation: peak current follows the control signal minus Vpp · duty cycle variations. If Vpp = 0, peak 
current follows control signal precisely.  
See a further discussion of the PWM modulator and its gain in appendix 1. 
 
We should do a few checks to verify (2.2.1) in some simple special cases. The two cases which are simple are 
pure CMC and pure DCC: 

If Rsens = 0 we have pure DCC and duty cycle in (2.2.1) will become   which is the well known  
PWM gain in Voltage Mode Control:  
 

When Vg moves from ramp bottom to ramp top, ∆ moves from 0 to 1, so                           or    
 
If Vpp = 0, the modulator gain goes to infinity, which can only be true if the denominator of (2.2.2) goes to zero, 
implying that  Rsens · îL(s) = vg(s). 
This is pure current mode control where the peak current follows the control signal. Also this result looks correct. 

δ(s) disappears from this equation, agreeing with the statement that pure current mode control does not care 

about duty cycle. There is a duty cycle of course and equation (2.1.8) and (2.1.9) must still be fulfilled, but δ is 
not a control variable any more.  
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2.3 Imperfections of peak current mode control 

Observing figure 2.2.1 it is obvious that output voltage in a buck power stage must be determined by inductor 
current, or more precisely the average inductor current pr. cycle IL+iL.  
On the other hand, the control mechanism in CMC controls peak current ÎL+îL, according to the modulator gain 
expressions. There are two things that can cause average current deviations iL not to follow peak current 
deviations îL: 

1. Average current is peak current minus half the peak-peak ripple current. Peak-peak current depends on Vi 
and Vo. So if Vo changes, average current will change without change of peak current.   

2. Later we shall learn about subharmonic behaviour, which causes the average current pr. cycle to bounce 
forth and back after a step in peak current control.  

What we must do is therefore, somehow, to replace îL with iL in the modulator gain expression. If the modulator 
gain contains iL , it will contain the same current variable as all other equations we write for the system, for 
instance (2.1.8), which enables us to solve them.  

We start with the ripple current effect and leave the subharmonic effect till chapter 3. 
 

2.4 Ripple current effect 

The inductor current ripple current depends, among others, on the relation input / output voltage. Since output 
voltage and duty cycle are variable, the ripple current will be so too. The effect will be most visible at low 
frequencies, because an output capacitor will prevent output voltage from changing fast.  

In most practical cases the ripple effect does not have significant influence on the performance of a feedback 
loop. But especially in cases where we use a low value output capacitor it causes a significant loss of low  
frequency gain. This normally does not affect loop stability which depends more on the gain at medium 
frequencies and how the gain passes through 0dB. But it can affect properties like input hum suppression. 

 The problem is this: The average inductor current IL is not equal to peak current ÎL but peak current minus half 
of the peak-peak ripple current Ipp. This applies to inductor current pr. cycle at any moment: 

 

 
Since the ripple current in the inductor depends on output voltage Vo + vo which is variable, iL will be a function 
of both control voltage vg and output voltage vo.  

Extracting small signal parts: 

 
We proceed by expressing the inductor ripple current in terms of input and output voltage. 

Law of inductors: 

 

Adding small signal terms to the two variables Ipp and Vo: 

 

 

 
Isolating small signal terms and neglecting the product of two small signal terms: 

 

 

 
Inserting (2.4.5) in (2.4.2) we get 
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(2.5.2)  =  (2.4.7) 
 

(2.5.3)  =  (2.1.7) 
 

(2.5.4)   
 

and then inserting (2.4.6) in the modulator gain expression (2.2.1): 

 

 

 

If we hide the Laplace operator (s) and re-arrange a bit we now get   

 

 

 
Now we are happy. This modulator gain expression contains  iL, not îL. 

The last term is the correction term for ripple current effect. Note that if Vo = ½ · Vi , i.e. ∆ = 50% (neglecting RL) 
this term becomes zero. 

 

2.5 Calculation of buck power gain  

Equivalent to (2.1.8) we will now find a general expression for inductor current  iL(s) versus control signal vg(s) 
which is valid for both CMC, DCC and any combination in between. The power gain of the power stage shall be 
defined as the ratio  

 

Hereafter the Laplace operator (s) will still be implied in the small signal variables but we will not write it, in order 
to increase clarity of the expressions.  Let us now re-use figure 2.2.1: 

 
For simplicity let us write the inductor impedance as  

To find the Powergain we can use the following three equations with the unknowns δ , iL and vo . 
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(2.5.5)   

(2.5.7)   

(2.5.6)   

Eliminating  δ  and  vo  from these equations leads to 

 

 

 
The last term in the denominator contains the ripple correction term. 

 

 

If you prefer the gain from vg to vo, which is perhaps more usual, here it is: 

 

 

 

 
Zload must include the output capacitor + any load connected to the output.  
Rload is only equal to Vo/Io for a resistive load. Generally Rload means the dynamic load connected to the output, 
i.e. vo/io which is not necessarily equal to Vo/Io. 
 

(2.5.5) + (2.5.7) are ready-to-use equations for CCM that you can copy into a calculator and plot their gain and 
phase - see examples in chapter 3.10. 

 

A little discussion of (2.5.5) and (2.5.6). You can skip this part if you are curious for the next chapter. 

With pure Duty Cycle Control (Rsens = 0) the ripple factor disappears and (2.5.5) turns into 

 

 
 
which seems correct. Compare to (2.1.8).  

The ripple factor Krip has effect only with Current Mode Control.  

Krip becomes zero if Vi = 2·Vo, i.e. if ∆ = 50%.  If ∆ < 50% Krip is positive. If ∆ > 50% Krip is negative.  

So the ripple current has no effect on Powergain at the magic point ∆ = 50%. 

With pure Current Mode Control (Vpp = 0)  (2.5.5) turns into 

  

 

 

 
We see here that when Vo = ½ ·Vi , Powergain is simply 1/Rsens as you would normally assume for pure CMC. 
This means that the power stage becomes a controlled current source, hence completely eliminating the 2

nd
 

order nature of a duty cycle controlled buck converter. This is an advantage in feedback loop design since it 
turns the normally complex double pole into a single real pole which originates in the output capacitor. 

But when Vo is not = ½ ·Vi  we do not have a pure current source any more. In fact, if Vo < ½ ·Vi  the output 
current drops for constant vg if Vo rises, and vice versa. This is equivalent to a power generator having a 
positive output resistance. And if Vo > ½ ·Vi the opposite should happen – a power generator with a negative 
output resistance (!!) 

This can also be understood from the fact that a buck converter has maximum ripple at Vo = ½ ·Vi. Investigating 
the derivative of (2.4.2) should show that. If the buck converter is controlled by a constant peak inductor current 
the average inductor current will be minimum when Vo = ½ ·Vi. When Vo ≠ ½ ·Vi the inductor current (= output 
current) will be higher.  
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(2.5.9) leads to a peculiar consequence. If we assume that the load impedance is a capacitor Cx, then 

for Vo < ½ ·Vi  

 

 

and for Vo > ½ ·Vi   

 

 
In both cases Rx is a fictitious positive resistance. 

Powergain in (2.5.11) shows a Right Half Plane Pole on the x-axis which will become part of the open loop gain.  
If Vo > ½ ·Vi , the power stage gain will indeed be unstable – the duty cycle will either rush to 50% or 100% for 
constant control signal vg. 

But this discussion is a bit academic. We are going to see that a Current Mode Controlled buck stage in CCM 
will exhibit subharmonic oscillation if operated above 50% duty cycle. Subharmonic oscillation is normally not 
accepted and the cure for it is to introduce some slope compensation, by letting Vpp be > 0. 

Doing the calculations, it turns out that the necessary slope compensation to kill subharmonic oscillation is 
exactly what is required to turn the Right Half Plane Pole into a Left Half Plane Pole in the above equations. 

Nature is really well thought out ☺ 

If, however, we operate the converter in DCM with Vo > ½ ·Vi , the subharmonic behaviour is absent, we don’t 
have to apply slope compensation, and the power stage is indeed unstable at DC and will tilt, if the feedback is 
removed and Vg is left constant.  
But in a closed loop this does not necessarily mean an unstable system. Since this kind of instability of the buck 
stage at Vo > ½ ·Vi  shows itself at DC and low frequencies, a closed and normally fast feedback loop should 
easily be able to correct for it. A peculiar detail which not many know about. 

Compare it with a cyclist. As long as he is riding, he is able to correct errors in balance by regulating the 
handlebar. He is part of a fast acting feedback system. But if he stops riding, regulating the handlebar will not 
have any effect, and he will tilt to one side or the other because a bicycle with only two wheels is unstable.  
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(2.5.11)   

Powergain
1

Rsens

s

s
1

Rx Cx⋅
+

⋅ Rx
F L⋅

1

2

Vo

Vi
−

0>

Powergain
1

Rsens

s

s
1

Rx Cx⋅
−

⋅ Rx
F L⋅

Vo

Vi

1

2
−

0>



Runo’s Power Design  
Runo Nielsen  
Kildebjerggaard 3  
5690 Tommerup  
Denmark September 2018 
www.runonielsen.dk 

Understanding the Feedback Loop  
in a Buck Converter 

Page 15 
   

©  Runo Nielsen 

2.6 Completing the loop 

The total open loop gain of a buck converter is  Ao = Powergain ⋅ Zload ⋅ Gaing .  
Gaing(s)  is the frequency dependent feedback gain as shown in the closed loop model in figure 4.5.2. The 
feedback path typically comprises one or several amplifier stages with local feedback and resistive or resistive + 
capacitive voltage dividers. An opto coupler or a transconductance amplifier can also be part of the feedback 
path.  

For stability the open loop gain versus frequency must be controlled so that there is a reasonable phase- and 
gain margin. Good rules of thumb tell us to keep a phase margin of at least 45 degrees and a gain margin no 
less than 6 – 10 dB. This is normally achieved by adjusting poles and zeros in the frequency dependent error 
amplifier gain which is part of Gaing - a process normally called 'compensating the error amplifier'. Describing the 
gain of this part is well-known craftsmanship for most engineers and will not be part of this article.  
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Figure 4.5.2 

∆+δ 

Vsens 

pulse 
generator 

Vs+vs Vo + vo 
Vi 

Zload 

Rsens 

 Vpp 

+ 
- 
+ 

R 

S 

IL+iL 

L 
RL 

Gaing 
Vg+vg 

Rload 

 ESR 

 Co 



Runo’s Power Design  
Runo Nielsen  
Kildebjerggaard 3  
5690 Tommerup  
Denmark September 2018 
www.runonielsen.dk 

Understanding the Feedback Loop  
in a Buck Converter 

Page 16 
   

©  Runo Nielsen 

3 Including subharmonic behaviour 

The intrinsic subharmonic instability of a peak Current Mode Controlled power stage in CCM has been known 
for many years. With pure CMC (no slope compensation) such a power stage becomes unstable and starts self 

oscillating at half the switching frequency (F/2) when the duty cycle ∆ exceeds 50%, even without any external 
feedback loop. The subharmonic behaviour is an inherent property of a peak current controlled power cell. 

Does this mean that a current controlled power cell running at ∆ < 50% is always stable? Yes, in itself it will not 
oscillate, but close to 50% duty cycle it will still behave as if it had a resonance at F/2. A resonance whose Q 
goes towards infinity when ∆ approaches 50%. After a step command the inductor current will bounce in steps 
around the new value with an alternating current error decreasing exponentially in time. A kind of 'digital' or 
‘sampled’ ringing. 

So even though the power cell itself does not oscillate, the apparent resonance at F/2 can cause an outer 
voltage feedback loop to become unstable at F/2, if the gain peak at F/2 is not sufficiently suppressed. 

This effect was not covered in my loop calculators until now. 

Dr. Ray Ridley investigated the subharmonic phenomenon many years ago in his ground-breaking PHD 
dissertation (ref. 3) and published equations to describe it and its influence in an outer voltage loop. However, 
when I try to apply those equations in a calculator, I find areas where the results are incorrect. The same seems 
to apply to others who use them, including dr. Ridley himself (ref. 6). 

The published data also does not provide much understanding to the reader of the physics behind the 
equations. Or perhaps I am just not skilled enough to handle the information. 

For some years I have therefore been dreaming of building up my own understanding and incorporating the 
subresonance phenomenon in my loop calculators. My feeling was that once a good mathematical description 
was made, it would be simple to implement it in the present calculators as a small addition without changing all 
the present equations.  
The obstacle was that a subresonance ringing should best be described with math for sampled data, which is 
more or less unfamiliar to me and many of my fellow analog engineers. I think we all learned about Z-transform 
at the engineering school, but not many have used it since school time. 

It would be a natural approach for an analog engineer to see the power cell with analog eyes and describe its 
behaviour with the more familiar 2nd order transfer function with a resonance at F/2 and a Q fitting with the 
exponential decay of a current error. In other words, replace the 'sampled' step-ringing with an analog one with 
an exponentially decaying sine shaped disturbance. This is apparently what was done in (ref. 3+6+8), but it is 
not clear how the equations were derived or when or when not to use them.  

During 2017 - 18 my dream started to crystallize into specific results, and indeed the subharmonic behaviour 
can be modelled and included by basically replacing one simple equation with another. However, the derivation 
of that equations takes a lot of explanation. 

In the present article I will try to let you look into the theory or the theories that I found useful. In fact I tried both 
the analog and the digital – or sampled – approach. It turns out that the analog approach evolves into heavy 
equation work, whereas the sampled approach looks much simpler, albeit with a strange looking result which 
does not appeal much to an analog mind. Therefore I will also go through some essential sampled data analysis 
concepts that are useful in the derivation.  

Both methods rely heavily on Laplace transforms. My admiration for Mr. Laplace keeps rising.  

 

A peak current controlled power cell can be seen as an inner current loop with its own open loop gain and 
phase. Many papers deal with it as a separate inner loop whose closed loop gain is iL/vg  i.e. the small signal 
deviations of inductor current versus control voltage, as in figure 2.2.1 for instance. We need to know iL/vg to 
calculate an outer voltage loop. 

It can be explained that when duty cycle ∆ comes close to 50%, the gain margin of the inner current loop 
approaches 0 dB while phase lag is 180 degrees at F/2, therefore the closed current loop shows a gain peak 
and will ring at F/2.  

There has been a lot of controversy about this inner current loop and the way to understand it correctly (ref. 9) 
The modulator gain discussion in appendix 1 fits nicely into that story.  
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I don't think it is necessary to open the inner current loop and discuss its strange properties, since it is the 
closed loop gain iL/vg or the transconductance of the power cell we need to care about. In a buck converter we 
have earlier used the name 'Powergain' for iL/vg (but differently in boost and buck-boost).  

It is possible to describe the closed loop behaviour without considering it a loop at all. At least according to my 
view, some others would probably disagree with me.  

In the next chapters we shall see how it can be done. 
 

3.1 What do subharmonics look like? 

Figure 3.1.1 is nearly the same as figure 2.2.1 - a buck converter with a current controlled power cell. Let us first 
see how it works without slope compensation, i.e. with Vpp = 0 where the peak inductor current is exactly set by 
the programming signal Vg. The switch is turned on by a clock signal and turned off when the set current is 
reached in each pulse. The control signal only controls peak current. It has no influence on what happens to the 
current between the peaks or when the peaks occur. 

 
Figure 3.1.2 is an example showing how the inductor current IL moves from one steady state to a higher one 

after a step in the control signal. In this case duty cycle ∆ is close to 40%. We see that the current does not hit 
its new steady state immediately. There is a current error starting to be equal to the step size and then bouncing 
forth and back with an exponentially decaying error.  

Thus, by simply drawing a few lines on a piece of paper, the sampled ringing at F/2 appears immediately. The 
error shifts sign for each pulse while decaying exponentially. We just need to express it in an equation. 
We are assuming that slopes are constant, i.e. input and output voltages do not move while the bouncing dies 
out.   
Note that the "sampling" instants are at the instants of peak current, not the clock signal. 

What would happen if ∆ was not 40% but 60%?  
As an exception, waste a piece of paper by printing out figure 3.1.2, go to the bathroom and look at it in the 
mirror to reverse the x-axis. Now you see 60% duty cycle and a small start error exponentially rising while 
bouncing around the intended steady state. This is what we call subharmonic oscillation in the power cell when 

∆ > 50%. 

Maybe we should clarify what we mean with duty cycle ∆. This may become unclear if we replace the diode with 
another active switch or if we want to create an ‘inverse peak current mode’ control where we turn off the active 
switch when the bottom (negative peak) current hits a programming signal. This is possible but never really 
used.  

∆∆∆∆ is always the relative length of the time period following immediately after the clock signal.  
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The decay of the current error will depend on duty cycle ∆. Close to 50% the decay pr. cycle is low, and the 

sampled ringing takes a long time to vanish. At low ∆ the error vanishes within a few cycles.  
Let us define a factor “pro” as the error in one cycle relative to the error in the previous cycle. In the example 
above “pro” will be close to –0,7. It is negative when the error shifts sign each cycle and positive if the error has 
the same sign as in the previous cycle.     
 

3.2 The progression factor ‘pro’ 

The next step is to find “pro”. With no slope compensation it is easy. 

 

Figure 3.2.2 
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The slopes of the sensed inductor current are called ‘upslope’ and ‘downslope’. Both are defined as positive 
numbers.  

By simple geometric observation in figure 3.2.2 the following relations can be written: 

 

 

 

 

The same ratio would be found for 

2

3

∆I

∆I
, 

3

4

∆I

∆I
, etc.   

As expected, if ∆ = 50% downslope = upslope, therefore pro = –1 which means the sampled ringing will never 
die out.   

 

Now we shall see what happens when we add slope compensation. In figure 2.2.2 we showed the slope ramp 
Vpp added to the sensed inductor current, the sum compared to a fixed programming signal Vg. This is what 
most current mode control ICs do.  
But we can just as well subtract the slope ramp from the programming signal and compare the difference with 
sensed current. In the following drawings we will do that. In this way the consequences may be easier to see.  

 

With the same method as before we will find 

1

2

∆I

∆I
pro = . All three slopes are defined as positive numbers. 

 

 

 

 

 
You may have to scratch your hair a few times to verify these simple relations.  
Fortunately, everyone seems to agree on them.  

If slope = downslope, ∆I2 and pro become zero. It is evident from figure 3.2.3 that if slope and downslope are 
equal, any current error will be gone after the first current peak. This means that the steady state will be reached 
within one cycle.  
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We must also show the picture if slope > downslope. 

 

Geometric observations in triangles drawn around the peak current show that equation (3.2.2) is still valid, but 
since slope > downslope, pro becomes > 0.  
There is no ringing left, only an exponentially decaying current error with constant polarity.  
As we approach DCC, the sensed current slopes become insignificant, and pro should approach +1, meaning 
that a current error should persist for ever. This is mostly an academic viewpoint in a normal power supply. A 
permanent current error would make the output voltage rise and slopes change which will of course be 
corrected by an outer feedback loop. But if we are making a battery charger, where the load is an ideal battery, 
the statement is true. You cannot regulate a battery charger properly without involving current in the regulation.  

It is interesting that we did not have to refer to any specific topology of the three basic PWM converter types 
while evaluating the progression factor. The equations for pro are true for all of them: buck, boost, and buck-
boost. 

 

3.3 Subharmonic modelling methods 

The progression factor pro is an important factor for modelling, no matter what kind of model we choose. The 
most popular kind of model seems to be an analog equivalent 2

nd
 order low pass filter circuit whose Q factor 

gives the same exponential decay of an analog ringing as the pro factor does on the sampled ringing. Ridley (ref 
3) uses this approach, but after studying his literature many times the details of his modelling remain unclear to 
me. 

In the next pages we shall see a more direct approach based on sampling theory, but probably less intuitive. It 
is based on the definitions in the Laplace transform. Because most of us have probably forgotten these 
definitions and their consequences, I will try to revive the basic concepts of the Laplace transform that we need 
to understand in order to build the model. 

In chapter 3.8 I will also show you a way to build an equivalent model using an analog 2
nd

 order low pass filter 
analogy. It turns out to be more complicated than the sampled analogy. 
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3.4 Laplace sampling gym 

The Laplace transform is a mathematical manipulation of a time dependent signal, and the result is a 
mathematical expression of the same signal in terms of a complex frequency ‘s’. It has similarities to the Fourier 
transform but contains more information.  

The frequency ‘s’ is a complex number with a real part σ and an imaginary part j·ω:  s = σ + j·ω   where  ω = 

2·π·frequency is the radial frequency. For a function f(t) the Laplace transform is defined as 

 
 
 
For sampled systems the function f(t) is normally constant within the sampling period (switching period) T. This 
is convenient because it makes it very simple to write the Laplace transforms related to it. Let’s see some useful 
examples: 

 

 

 

 

 

 

 

 

 

 
Here we see that a delay of T multiplies f(s) with e-sT. 
The next case is the difference between the two first. 

 

 

 

 

 

 

 

 

 

 

The equation (3.4.4) is also the transfer function of the ‘hold’ part of a normal sample & hold network. One way 
to explain that is that the rectangular pulse next to (3.4.4) is pr. definition the impulse response of a hold 
network: A dirac impulse with area = 1 on the input of a hold network makes it respond with the value ‘1’ during 
one sampling time. A system’s transfer function is generally identical to the Laplace transform of its impulse 
response, which is easily proven from the definition of the Laplace transform. 

The transfer function known for a sample & hold network is very similar: 

 

 
Perhaps you remember that the output of a sampling process (without ‘hold’) contains the full spectrum of the 
original signal plus the same spectrum centred around all positive and negative harmonics of the sampling 
frequency. Therefore, the sampling transfer function (gain) is constant up to F/2.  
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The sampling only adds a division by T because the transfer function of the sampling process is 1/T up to half 
the sampling frequency.  
A short explanation for the 1/T factor: If a signal has the value x(nT) at time nT, then the area covered by the 
signal during the sample period from nT to (n+1)T is T· x(nT), whereas the area in the corresponding sampling 
impulse is only 1· x(nT), because the dirac impulse defining sampling has an area of 1.  

In fact we do not need to 
study the sample & hold 
process to reach our goal. I 
do it because it can give us 
some additional useful 
insight. Let us for instance 
plot the gain and phase of the 
sample & hold transfer 
function and see what it looks 
like.  

As taught in literature on 
sampling theory there is a 
frequency dependent gain in 
the S&H process. At F/2 the 
gain is -4 dB. 

The phase shift is the same 
as for a delay of T/2.  

Mathcad has no problem in 
evaluating and plotting 

expressions in s for s = jω like 
(3.4.6), but we may have. It 
can be instructive to open the 
Laplace expression and see 
what a sample & hold circuit 
really contains. 

 
First a little manipulation: 

  
 

Then replace s with jω to 
be able to plot it in a  
frequency plot: 
 
We have used Euler’s equation: 

 
The first factor in (3.4.7) is a delay of T/2 = half the sampling time. 

The second factor is the well known sinc function sin(x)/x which has its first zero at ω = 2π·F = the sampling 
frequency. The delay causes a phase lag increasing linearly with frequency, and the amplitude of the sinc 
function is the red curve in the upper part of figure 3.4.1. 
 

Then how does the sample & hold function react on a step in the time domain? 
Figure 3.4.2 shows the answer. The S&H response and the delay response are plotted by summing a lot of 
harmonics of a sampled & held square wave. It’s the same method that I use to plot the step load response in 
my loop calculators. 

Indeed the sampling process has an average delay = T/2, however with slopes ramping up or down with a slope 
duration of one sampling period. This is because the sampling instants are randomly related to the signal steps. 
One sampling period after a step all steps will be registered. Half a sampling period after a step only half of the 
steps have been registered. Therefore in average the response after T/2 is 0,5, etc. 

What a fascinating revelation coming out of some Laplace exercises ☺ 
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If we draw a sine wave with its 
sampled representation like in figure 
3.4.3, the delay of T/2 is evident.  

If we study the same signals on an 
oscilloscope and let the scope 
calculate the average of a lot of 
sweeps, we would also see an 
average sampled signal as a delayed 
sine with slightly lower amplitude than 
the original sine wave. This amplitude 
reduction will approach -4dB as the 
sine wave frequency approaches F/2. 

 

3.5 Subharmonics in Laplace domain 

We are going to see that many things in subharmonic modelling show resemblance to what we just learned 
about sample & hold circuits. Let us first find the properties of a sampled ringing describing a current error as 
shown in figure 3.5.1. 

 
ring(t) represents a ringing current error like the idealized current error found in figure 3.1.2. In the ringing case 
pro is a negative number: here it is about –0,65. For each ringing half cycle the remaining current error is 
multiplied with pro, therefore the error values 1 – proN can be written on each half cycle. 

 

1 

t T 

1 – pro 

1 – pro2 

1 – pro3 

1 – pro4 

1 – pro5 

1– pro6 

ring(t) 

u(t) 

Figure 3.5.1 
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Figure 3.4.2 

Figure 3.4.3 
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The response can be described as a sequence of unit pulses scaled with proN: 

 

 

 

 

 

 

The Laplace transform is the sum of the transforms of all those unit pulses. 
Using the result from (3.4.5):  

 

 

 

 

 

 

 

 
 

 

Setting  x pro e
sT−

⋅  we can simplify: 

 

The geometric series          for |x| < 1 according to mathematical handbooks.  

  
Therefore we can simplify more:  

 

This is the Laplace transform of the unit step response ring(t). 

 

 

 

 

 
To find the transfer function h(s) of a system having ring(t) as its unit step response we can use the same 
system’s response to a unit dirac impulse. Elementary Laplace rules say that h(s) = Laplace(dirac impulse 
response) which is also = s · Laplace(unit step response). 

So the system’s transfer function will be 

 

 

For pro = 0, h(s) = 1. 
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Let’s plot h(s) and its step response for F = 10kHz: 

 

Fantastic. The step response is the best check that we have done the right calculations. 

Some other examples. First an over damped system like the one in figure 3.2.4.  pro > 0: 

 

And what if the system is self oscillating: pro < –1: 

 

The equation (3.5.6) still works for pro < -1. We see an exponentially growing oscillation. 
The math handbooks set the restriction |x| < 1 for the geometric series 1 + x + x2 + x3 + … to have a valid result. 
But it seems it also gives meaningful results for other x. Maybe a mathematician can explain that.  
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3.6 A more accurate model of reality 

The results of the previous chapter look very convincing, don’t they? 
But they are not showing exactly what a real current mode controlled circuit does. Reality is a little more subtle.  

Two spooky things about h(s) is that it 
can have a phase lead, and it has 
always a gain of 1 at the switching 
frequency. From sampling theory we 
remember that the gain at the sampling 
frequency should be 0, like in figure 
3.4.1.  

To see what the real world does, a buck 
test circuit was built equivalent to figure 
3.1.1, a step command was injected on 
its Vg input. Inductor current was 
monitored on an oscilloscope – figure 
3.6.1 - 3.6.4.  

In the first experiment there is no slope 
compensation. Therefore the top 
envelope (peak) of the inductor current 
follows the control signal precisely. The 
sampled oscillation is only seen in the 
bottom envelope. The vertical width of 
the envelope is the peak-peak inductor 
current.  

The average behaviour through 
hundreds of steps, shown in red, is a 
ringing triangle, not a ringing square 
wave.  
The average duty cycle (average of 
switching node voltage) moves like a 
square wave ringing found by 
differentiating the average inductor 
current. This seems to make sense. 

 

 

The second experiment was done with 
a moderate slope compensation added. 
Note that the ringing is better damped, 
even though duty cycle is now at 50%. 
Also note that the peak inductor current 
does no longer follow the control signal 
(top envelope).  

Buck. Vi = 50V  Vo = 20V.  Load = 22Ω.  F = 25kHz.  L = 500µH.   
No slope compensation   =>   pro = – 0,67 
Green 1kHz step command on current set input Vg 
Grey Inductor current envelope (infinite persistance) 
Red Average inductor current 
Yellow Average duty cycle change 
Cursor Switching period.    

Buck. Vi = 50V  Vo = 25V.  Load = 22Ω.  F = 25kHz.  L = 500uH.   
Slope = 0,5 x downslope  =>  pro = – 0,33 
Green 1kHz step command on current set input 
Grey Inductor current envelope (infinite persistance) 
Red Average inductor current 
Yellow Average duty cycle change 
Cursor Switching period.    

Figure 3.6.1 

Figure 3.6.2 
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In the third experiment we use slope 
compensation with slope = sensed 
inductor current downslope. 

 
As predicted, the oscillation is gone.  
The response is the fastest possible, in 
average looking precisely like that of a 
sample & hold network – see figure 
3.4.2. 

 

 

 

In the fourth experiment we use much 
more slope compensation. In fact this is 
more like DCC with a control ramp (the 
slope), however with a small amount of 
current signal injected in the modulator.  

 

 

 

 

 

For the first and second experiment the 
average inductor current does not follow 
peak current. The difference is the 
subharmonic ringing.  
For the third and fourth experiment it 
could be fair to say that peak and 
average current follow each other 
somehow.  

 

It takes a bright mind to figure out these 
pictures by human brain activity. It 
would even be difficult to see it in a 
simulator. 

 

 

Our first task is now to write the transfer 
equation for a system having the red 
average current curves as its step 
response.  
There are surely several ways this can 
be done. We will try to keep it simple. 

We start with the ringing case. 
And then find that the derived equation 
works for all cases, ringing or 
exponential or even oscillating. 

Buck. Vi = 50V  Vo = 20V.  Load = 22Ω.  F = 25kHz.  L = 500uH.   
Slope = downslope   =>   pro = 0 
Green 1kHz step command on current set input 
Grey Inductor current envelope (infinite persistance) 
Red Average inductor current 
Yellow Average duty cycle change 
Cursor Switching period.   Note average delay of ½ T. 

Buck. Vi = 50V  Vo = 12V.  Load = 22Ω.  F = 25kHz.  L = 500uH.   
Slope = 5,8 x downslope  =>  pro = 0,55 
Green 1kHz step command on current set input 
Grey Inductor current envelope (infinite persistance) 
Red Average inductor current 
Yellow Average duty cycle change   
Cursor Switching period.    

   Figure 3.6.3 

  Figure 3.6.4 
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f(s)
s

1
(s)I av ⋅=

OK, figure 3.6.5 shows the function Iav(t) that we must transform. Remember that pro < 0 for the ringing case. 

An easy way is to find the derivative f(t), then use the rule that  Laplace(f(t)) = s · Laplace(Iav(t))  or   
 

 
And then use the other rule that the transfer function g(s) for the system is s · Iav(s) as explained with equation 
(3.5.6). Therefore g(s) = f(s) = Laplace(f(t)). 

 
If we define the pulse function Pulse(t) = 1 for 0 ≤ t < T and 0 otherwise, then f(t) can be seen as an infinite 
sequence of exponentially decaying pulses, each with a width of T.  
 
 
 
 
 

 
Using (3.4.5) on each of these pulses and summing: 
 
 
 
 

 

 
Using again that                                                 : 
 

This is our result.  g(s) = sample & hold function multiplied by the previously found square ringing transfer 

function. For  pro = 0 we get the sample & hold equation (3.4.6) ☺ 
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Some plots of this result for g(s) at 10kHz switching frequency: 
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Figure 3.6.7 
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3.7 How to implement the result in a loop calculator 

We are nearly ready to find a way to implement this simple looking result in the existing loop calculators. But 
there is one more thing to consider. One thing that took me a while to figure out.  

g(s) is indeed the high frequency gain of the power stage, which is perfectly proved by these step responses. 
But with the selected approach g(s) is not directly usable in our model containing the modulator gain expression.  

For all pulse width modulated converters in CCM we found the modulator gain expression (2.2.1) to be a 
governing expression in the loop description: 

 
 

 
It contains peak inductor current îL(s) which makes this equation valid from pulse to pulse as well as in the long 
term.  
However, what must be used to calculate the output voltage or current is average inductor current pr. cycle, not 
peak current. And we just found that average current pr. cycle does not completely follow peak current. If we 
could somehow replace the peak current in (2.2.1) with an expression containing average current pr. cycle at 
high frequency, we would be done.  

The previous discussion presupposes that there is no significant change of output (and input) voltage while the 
subharmonic ringing  is observed. This assumption is reasonable in an SMPS with a low impedance output 
capacitor. Therefore it is fair to let the subharmonic model only describe the fast changing currents from cycle to 
cycle, while the already found equations (2.5.5) and (2.5.7) should continue to describe what happens with 
slower speed. 

A way to find the ratio 
)(i

(s)î

L

L

s

 is to combine the modulator gain with basic buck converter equation (2.1.8): 

 

 
However, in (3.7.2) Zload and RL should now be set to zero to agree with the assumption that the output voltage of 
the basic buck stage does not change. If we don’t we get wrong results at low frequency.  
 

Modulator gain: 

 

From (3.7.2): 

. 
Equating the two right hand sides:  

 
For the average inductor current we already  
found g(s) in (3.6.2) so that  

 
Combining these equations leads to  

 
and combining (3.7.5) and (3.7.6) 
leads to the correction term:    

 
Aha the correction we need involves not just g(s) but something more.   

Let’s check the peak current by plotting the bracket in (3.7.6) and especially its step response.  
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Plots of                                   (red) together with the average inductor current function (blue): 
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For these plots I selected data aligned with those in the scope plots, except switching frequency and step 
frequency. Compare the calculated peak current with the upper envelope in the scope plots.  

Isn’t it amazing what math can do?  

1 g s( )
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⋅

Vpp
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Figure 3.7.1 
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A short discussion of the observations in these plots and especially the scope plots will be appropriate.  
Here are two forms of the modulator gain: 

 

 

The last one states that peak current follows the control signal minus Vpp · duty cycle deviations. This is exactly 
what we see in the scope plots. And if Vpp = 0, there is nothing to subtract, so peak current follows control 
signal.  
 
It is remarkable that we have not done any new assumptions or approximations. (3.7.7) covers all situations, 
ringing, critically damped or highly overdamped. Even pure duty cycle control, however we then unfortunately 
will divide by Rsens = 0. 
We could solve this small problem and go ahead with (3.7.7). It would be perfect. 

But simplifications can still be made, and there are more interesting things to be learned. Hang on just a little 
while more.  

During check plots it appeared that HFcor(s) does not depend on neither L, Rsens, nor Vpp, only on the ratio  

∆ = Vo/Vi and the switching frequency. That is not at all evident from (3.7.7), since these variables are part of 
the equation, and g(s) also depends on them.  
Is that a coincidence? No it isn’t. At this moment it appeared to me that the relation between peak and average 
current pr. cycle at any frequency must be an inherent property of the power cell, a property which does not rely 
on control methods. It is the same, whether it is peak current controlled or duty cycle controlled or anything in 
between.  

OK, if this is true, we could try to find HFcor(s) in an alternative way: calculate it in a special situation where it is 
easy. This special situation is with Vpp = 0, that is pure current mode control, in which peak current is exactly = 
control signal divided by Rsens. In this situation we know that  

 

 

 

so therefore 

agreeing with (3.7.7). 
 
 
For Vpp = 0  - from (3.2.1):   

 
 

and using g(s) from (3.6.2): 

 
 
 
What a simple expression, albeit still not easily seen through. The first term is the reciprocal of a sample & hold 
function. But what does that imply? Don’t speculate too much. A math calculator won’t care, it just calculates it.  

 
In a buck converter we can also write  

 

Replacing Vo/Vi with ∆ is smart because the progression factor pro is always the same for the same ∆, 
regardless if we are working with buck, boost or buck-boost. This makes (3.7.11) directly usable in all three 
converter types. 
And after this simplification we no longer divide by zero at any time. 

 
Having seen this, (3.7.7) can of course be reduced to (3.7.10), but it is tedious work: first insert Vi and Vo in the 
slopes, insert slopes in pro, then insert pro in g(s) and use normal algebra to reduce it. At first it looks as if it 
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never stops growing in size, hard to see that it can end as simple as (3.7.10). Embarrassingly, I needed some 
help to come through it myself.  

The rest is simple.  

Since  îL(s) = HFcor(s) · iL(s)   from (3.7.7) and since îL(s) always appears multiplied to Rsens, we can define a 
new complex and strange sense resistor 

 

and just replace Rsens with Rsens(s) in the equations (2.5.5) and (2.5.7). 

That’s all folks ☺ 

We can forget about all the h(s), f(s), g(s) etc. stuff again. (3.7.11) is the only thing we need. 
h(s), f(s), g(s) etc. were useful during the progress towards (3.7.10), and I have certainly learned new things and 
revived others from the engineering school while doing all that exercise.  

(3.7.12) 
 

R sens s( ) Rsens HFcor s( )⋅
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3.8 The analog way of thinking 

For those who would also like to see what an analog model would look like, I will briefly go through some 
derivations to come to an analog model with more familiar formulae for analog engineers. But it will not be 
simpler, on the contrary. 

An analog model for the subharmonic ringing is that of a 2
nd

 order low pass filter with a DC gain of 1. This filter 
has the well known transfer function  

 

 

 

where ωo is the radial “resonance” frequency and Q is the quality factor. Ringing (multiple zero crossings) occurs 

if Q > ½. ωo is assumed to be at half the switching frequency, so Q is the only quantity we need to find, based on 
the ringing progression factor pro defined in (3.2.2). 

If the poles of the 2
nd

 order denominator are  pole1 and  pole2 respectively, then the inverse Laplace transform 
will be, according to a math handbook: 

 

 

 
 
The upper part is valid for Q ≠ ½ i.e. for both ringing and non-ringing responses. The lower part is valid for Q = ½ 
at the limit case between ringing and non-ringing responses.  
g(t) will be equal to the response of a unit dirac impulse.  

We need to evaluate g(t) to find the relation between pro and Q. 

A lot of complexity is hidden in (3.8.2). No-one can see from this expression what it really does. So let us take it 
apart to see what’s inside. 

We know from school that the 2
nd

 order equation  

 
has the following poles:  

 
where                  ,                   and the discriminant     

 

In the ringing case Q > ½ so D is negative. Inserting (3.8.3) and using Euler’s equation                          : 
 

 

 

 

 

Inserting B, C, and D from (3.8.4):  

 
 
 
In the non-ringing case Q < ½ and g(t) will contain a “sinh” expression instead of “sin”. The hyperbolic sinh is a 
non-ringing function. We do not need this part of the math.  

From (3.8.5) we see that the response to a dirac impulse is an exponentially decaying sine wave with the 
angular frequency and decay factor
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The ringing frequency ωring differs from the resonance frequency ωo. They are identical for high Q, but the ringing 
frequency of an analog resonating system will decrease towards zero, as Q approaches ½. This will probably 
surprise many engineers. However, when it occurs, the resonance is so damped that it is difficult to see the zero 
crossings anyway. 

We know that subharmonic ringing always occurs at precisely F/2, also when the ringing is heavily damped.  
So there is an error in the analog model regarding ringing frequency. We can fix it by using a corrected 
resonance frequency:  

 

 

 
The decay equation can be used to find the relation between pro and Q. (3.8.7) must be used in order to make Q 
go to ½ when pro moves from -1 to 0. Inserting (3.8.7) in (3.8.6) gives 

 

 

 
Now we can find pro by setting pro = -decay(T):  

 

 

 

and solve with respect to Q: 

 

(3.8.10) is plotted in figure 3.8.1.  

Unfortunately we haven’t covered the case with subharmonic self 
oscillation. When the power cell oscillates, its pro becomes < -1 and Q 
becomes negative.  
In (3.8.9) negative Q gives same result as positive Q.  

Therefore, for pro < -1 we are better off using  
the uncorrected equation instead of (3.8.8): 

 
 
setting  pro = -decay(T):  

 
Q for subharmonic self oscillation: 

 
One small thing still remains to be done.  
The analog model results in a damped or growing sine wave. The sampled model gives a damped or growing 
triangle waveform. We should adjust the analog model to have the same fundamental amplitude of the ringing 
frequency component.  

The fundamental of a sine with amplitude 1 is 1. 

The fundamental of a triangle with amplitude 1 is 
2
π

8
. 

But if we just multiply (3.8.1) with this factor, it will no longer have a DC gain of 1. Instead if we multiply 
2
π

8
      

on the Q-factor it looks better.  

 
 

4Q

ω o

2π
F

2
⋅

1
1

4Q
2

−

(3.8.7) 
 

decay t( ) e

π− F⋅

4 Q
2

⋅ 1−

t⋅

(3.8.8) 
 

(3.8.10) 
 

Q
π

2 ln pro−( )⋅









2
1

4
+

pro e

π−

4 Q
2

⋅ 1−
− (3.8.9) 

 

decay t( ) e

π− F⋅

2Q
t⋅

pro e

π−

2Q

Q
π−

2 ln pro−( )⋅

(3.8.11) 
 

(3.8.12) 
 

(3.8.13) 
 

10.80.60.40.20
0.1

1

10

100

0.5

Q pro( )

pro

 

Figure 3.8.1 
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Some plots of the analog results compared to sampled ones. 
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Inspired from the previous section, what we must do is to find the correction factor HFcor for the analog model 
and multiply it to Rsens.  

HFcor was found to be independent on control method and it was found to be equal to 1/g(s) for Vpp = 0. This 
means we do not have to bother with equations for Q < ½ because with Vpp = 0 Q is always > ½. Therefore we 
will not derive equations to calculate an analog plot for Q < ½ (pro > 0) for the previous page, as we did in figure 
3.7.1 lower graph.  
All those plots were just for understanding and check, and are not needed in the loop worksheets.  

 
So - to build the analog model: 
 
Start with finding the pro factor for Vpp = 0:   

proo is generally different from pro.  
 
Then define the Q-factor for Vpp = 0: 

 

 

 

 

Gain from control to average inductor 
current at Vpp = 0: 

 

 
HF correction factor for Rsens: 

 
 
and finally:  
 

Compare equations (3.8.14 - 17) with the simplicity of (3.7.10). 

Could the above equations also be simplified like we did with (3.7.10)? I don’t think so. And I don’t really care 
because I will use the sampled model.  

 
I hate to admit it, but in this case ”digital” wins over ”analog”. 
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3.9 Comparing models – a calculated example 

Here are three plots of the same buck converter from our three models. 
This example demonstrates the value of including the peaking effect at F/2. The rightmost picture would lead us 
to think that this is a fine design, but the subharmonic inclusion tells us that in this case we should add some 
slope compensation to damp the F/2 peak.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Data for these graphs:  

Vi = 50V,  Vo = 22V,  L = 500µH, C = 1000uF,  
F = 25kHz,  Rsens = 0,333Ω,  Vpp = 0,  
pro = -0,79 
Error amplifier gain: see graph 

 
 

The plots end at 3·F to see the difference between the sampled model and the analog model. But plotting 
beyond F does not make any sense. In fact gain and phase data above F/2 have no value except to make the 
F/2 peak clearly visible. 

 

Most mathematical models in engineering are more or less an approximation to reality. However, I believe that 
the models found in the previous pages, especially the sampled model, is a more correct description of reality 
than anyone could have expected to find. It has been verified with a lot of Simplis simulations of buck and 
flyback, and up to F/2 both simulation and the sampled model agree so well that no difference could be seen in 
frequency plots. Simplis is a great tool. And it simulates fast. There is a limited version which is free (ref. 13). 
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3.10 Sweep of control method 

The next plots demonstrate what happens for a buck power stage, if we sweep the control from pure CMC to 
VMC. Output voltage is close to Vi/2, therefore the F/2 peaking is severe in CMC.  
Figure 3.10.1 is a plot of (2.5.5) with Rsens corrected with (3.7.11). Figure 3.10.2 is (2.5.7) + (3.7.11). 

As we add more slope compensation, the F/2 peak collapses. 
In the second half we leave the slope unchanged but decrease the current sense gain, until we are in pure 
VMC. In VMC we see the resonance peak of L and Co. 

The first plot is gain from control input to inductor current.  

Note how little current signal injection is necessary to damp the LC resonance.  

The current sense resistor in CMC is 1Ω in this example. Therefore the gain at medium frequencies is 1 A/V for 
CMC.  
The drop in gain at low frequencies for Vpp = 0 (black curve) is related to the ripple correction term explained in 
chapter 2.5.  

Units in the legend are V and Ω.  
Further data for this buck power stage is shown under the second plot. 
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The second plot is gain from control input to output voltage.  

The second plot looks a lot like that of Dr. Ridley which has become known as the logo of his company and as a 
typical plot from his software (ref. 6). However, my method does not require you to check "Voltage Mode 
Control" or "Current Mode Control", since the mode of operation is already given by Rsens and Vpp. Having to 
specify both leads to the risk of inconsistent inputs.  
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3.11 Things not covered by this article 

In this article I have concentrated on one topic: to study the complex gain function of the buck converter's power 
stage in CCM with special attention on the subharmonic behaviour. This is one way to start understanding the 
methods that can be used to make calculators for SMPS feedback loops.  
A lot of things are not covered here, for instance: 

1. Boost and buck-boost power stage gain with the associated Right Half Plane Zero as a sub-topic.  

2. Derived topologies like forward and flyback etc.  

3. Non-PWM based topologies like resonance converters. 

4. The power stage gain in Discontinuous Current Mode. It can be much different from the gain in CCM. The 
subharmonic behaviour is absent in DCM. 

5. Calculating the closed loop output impedance Zo - a subject neglected in most literature. 

6. How to add an LC output filter and implement it in the calculator. And to predict the open- and closed loop 
behaviour when the feedback signal is derived from before or after the filter. Or from somewhere else. An 
LC output filter is often used, and it can have a severe influence on your feedback loop, as well as how you 
connect the feedback path(s) to it. See more in ref. 11. 

7. How to control output current instead of voltage. Or how to combine the control of output voltage and 
current to make a power supply with a pre-determined output resistance. 

8. Using the SMPS as a power amplifier, i.e. with a fast moving reference as the input signal. How to 
calculate the (closed loop) gain function versus frequency of such an amplifier. 

9. The linear parts of the feedback network: error amplifier, transconductance amplifier, opto coupler, etc. 

10. How to calculate the step load response of an SMPS or the step control response of an SMPS amplifier, 
based on the closed loop gain calculations. 

 
Some of these features are described qualitatively in ref. 11. 

All of these features are included in my assortment of loop calculator tools, some features however not yet for 
all topologies. They are built as "open source" in Mathcad, so the user can for instance remove the inverting 
error amplifier and insert a non-inverting amplifier at any time. Or modify the equations of the linear part to cover 
the circuits in a dedicated IC. This freedom of use is not offered by any other loop software that I know. Except 
simulation tools of course, but simulation is quite another thing.  
On the other hand it requires some engineering skills to modify or extend the calculators. 
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Appendix 1     Perceptions and peculiarities of the PWM modulator 

In this paper I have defined a modulator gain expressing the relation between control voltage, duty cycle, and 
peak current in the presence or absence of a current sensor Rsens or a modulator ramp Vpp: 

 

 
Fm was used in ref. 3 as the name of the modulator gain.  
This expression seems to be subject to some controversy among SMPS gurus. The modulator gain has been 
treated by several authors during the past years, and many seem to disagree with me and with each others 
regarding its magnitude.  

The modulator gain from Ridley (ref. 3)  can be re-written as        
 
 
 
upslope is the current slope in the on-time multiplied by Rsens. 
Here the modulator gain is expressed by the sum of slopes of current and compensating ramp, not just the 
compensation slope as in (A1.1).   
Ridley’s result seems to make sense at a first glance at figure 2.2.1, since the current upslope and the 
compensation slope Vpp are added in the comparator. 
Several earlier and later authors have found other results for the modulator gain (ref. 9 and 4).  

Finding the modulator gain at first seems to be a simple task but it is apparently not so simple.  

In discussions involving Fm the peak current controlled power cell is often observed as an inner feedback loop 
where current is measured and used to 
control the duty cycle, which affects 
inductor current, so that the sensed peak 
current coincides with the control signal. 

Figure A1.1 is a representation of this 
inner current loop in a buck converter. The 
Fm gain box converts voltage to duty cycle. 
The Vi gain box converts duty cycle back 
to voltage by multiplying with input voltage. 

The open loop gain in this loop can be 
measured by inserting a small generator in 
series with the sensed current, and the 
open loop gain is then v2/v1. 

To keep the discussion simple there is no 
slope compensation in this chapter.  

The test generator will show itself only on 
v2 (at low frequency, Co = ∞), because the 
peak value of V1 must remain at Vg (figure 
A1.2). Therefore v1 must be zero so the 
open loop gain must be infinite, implying 
that Fm is infinite, which agrees with 
(A1.1). 

This has been the origin of loud 
discussions, because an infinite open loop 
gain would always cause the inner current 
loop to be unstable. We know it isn’t, 

unless ∆ > 50%.   

On the other hand, (A1.2) predicts that 
peak current does not completely follow 
the control signal, which is clearly not true 
for Vpp = 0. 

(A1.2) 
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Figure A1.1 

Figure A1.2 
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It is claimed in ref. 3 and elsewhere that it is incorrect to measure open loop gain in the path with sensed 
current. Instead it should be measured in a so-called ‘digital modulator’, where the current loop is opened and a 
test signal is inserted in a ”digital” point (duty cycle is a logic signal) to measure open loop gain.  
The test generator must then be a pulse extender/contractor. 

In this context the open loop gain will the ratio δ2/δ1: 

msens
LRC

dig FR
Z

Vi

δ1

δ2
gain ⋅⋅==  

ZLRC is the impedance into the 
inductor from the left hand side. 

What is the modulator gain Fm? 

Starting at the steady state, the 
control duty cycle is perturbed with 

δ1.  Therefore peak current will be 
perturbed to îL while average current 
and output voltage may also 
increase.  

Because the control voltage does not 
move, this will change the returned 

duty cycle to δ2. 

Figure A1.4 is an arbitrary snapshot 
of this. 

From the small red line we can write: 

upslopeTδ2îR Lsens ⋅⋅=⋅  

assuming that slopes have not 
changed significantly.  

So      

upslope

F

Tupslope

1

îRsens

δ2
F

L

m =
⋅

=
⋅

≡  

This is identical to Mr. Ridley’s Fm 
with no external ramp (A1.2). It is not 
infinite. 

A more thorough calculation of the 
loops involving component values 
etc. can be done, which confirms 
these results. It runs through the 
whole buck circuit with R, L, and C 

included, calculating how δ1 will 
affect average and peak current + 
output voltage, which again affects 

the returned duty cycle δ2 - at any 
modulating frequency. The results fit 
exactly with Mr. Ridley’s published 
results - as long as we assume that 
slopes and peak-peak ripple do not 
change.  

Since they do change for finite Co, 
the effect from that can be included 
by adding a dedicated feed forward 

term from vo to δ2, as we did it with the ripple correction term in (2.5.5) an (2.5.7). 
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Figure A1.3 

Figure A1.4 

Figure A1.5 
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Figure A1.5 shows what the whole modulation envelope may look like when δ1 is modulated with a sine wave at 
any frequency with constant Vg.  

δ1 swings between δ1a and δ1b, resulting in the returned duty cycle to be δ2a and “non defined” respectively. 

This modulation makes sense at positive δ1 − δ2 but there will be no returned duty cycle when the modulation 
goes negative. It would also be problematic to realize the modulator as a pulse contractor: receiving one duty 

cycle δ2 and as a result delivering a shorter pulse δ1 - for this we would need a modulator that can look into the 
future. 

Implementing a realizable digital modulator in a circuit is not straight forward. In a simulator it is a bit easier. 
Simulation in Simplis has confirmed Dr. Ridley's result for the digital modulator. But with the insertion point as in 
figure A1.1 both Simplis and real measurements confirm (A1.1) at low frequency, however this model (predicting 
infinite gain) falls apart at medium and high frequency. 

Strangely, we have found two open loop gains for the same system which are not identical. They should be 
identical because the total open loop gain is the product of the gains of each individual part. Here it seems as if 
the order of factors in the product makes a difference, which is of course non-sense.  

The gain of the PWM modulator seems to be different, seen from those two observation points. The difference 
is not marginal and it is not just caused by unwanted effects of ripple in the feedback path, as claimed to be the 
reason to invent the digital modulator.  

It seems we are making mistakes when trying to observe the inner current loop as a usual feedback loop. Its 
action as a feedback loop is really debatable. A feedback system with a single signal path should show the 
same open loop gain irrespective of where we cut and measure the gain.  Or shouldn’t it ??? 

If any of my readers can explain this odd property of the current controlled cell, I will be eager to listen. Life long 
learning keeps the brain energized.  
 
But I am not really concerned for it. In this presentation I have analyzed the current cell as black box without 
bothering about its inner properties. What I have found directly - the pro factor - should represent what others 
would call the closed loop gain of that inner power cell at high frequencies, which is the only interesting property 
for the design of the outer voltage loop. 

 

 

 

 

 


